Short communication

Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO$_2$ fluxes

Dean Vickersa,*, Christoph K. Thomasa, Jonathan G. Martinb, Beverly Lawb

aCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

bCollege of Forestry, Oregon State University, Corvallis, OR, USA

ARTICLE INFO

Article history:
Received 3 October 2008
Received in revised form 5 February 2009
Accepted 21 March 2009

Keywords:
Carbon dioxide flux
Eddy-covariance
Flux partitioning
Self-correlation

ABSTRACT

Self-correlation between estimates of assimilation and respiration of carbon is a consequence of the flux partitioning of eddy-covariance measurements, where the assimilation is computed as the difference between the measured net carbon dioxide flux (NEE) and an estimate of the respiration. The estimates of assimilation and respiration suffer from self-correlation because they share a common variable (the respiration). The issue of self-correlation has been treated before, however, published studies continue to report regression relationships without accounting for the problem. The self-correlation is defined here (for example) as the correlation between variables A and B, where $A = x + y$ and $B = x$, and where x and y are random, uncorrelated variables (random permutations of the observations). In this case, any correlation found between A and B has no physical meaning and is entirely due to the self-correlation associated with the shared variable x. Estimates for the self-correlation are presented for a range of timescales using two different methods applied to a 6-yr dataset of eddy-covariance and soil chamber measurements from a ponderosa pine forest. Although the estimate of self-correlation is itself uncertain, it is not small compared to the observed correlation, and therefore it can reduce the strength of the relationship that can be demonstrated even though there is a strong apparent relationship in the observations and a strong causal relationship is expected based on tree physiology through coupling of photosynthesis and autotrophic respiration. We conclude that previous studies using eddy-covariance measurements and standard flux partitioning methods may have inadvertently overstated the real correlation between assimilation and respiration because they failed to account for self-correlation.

1. Introduction

Partitioning of the net ecosystem exchange (NEE) of carbon, the quantity measured by eddy-covariance, into gross ecosystem production (GEP, or assimilation) and ecosystem respiration (ER) is necessary to improve understanding of the causes of interannual variability and between-site variability of annual NEE, and for verification and improvement of process-based carbon models. Establishing relationships between GEP and ER is important for predicting the influence of climate change on future sequestration of carbon by ecosystems. For example, observational studies often report that GEP and ER are strongly correlated (e.g., Janssens et al., 2001; Hogberg et al., 2001; Reichstein et al., 2007; Stoy et al., 2008; Baldocchi, 2008). Such correlation would imply that potential changes in GEP associated with climate change may be partially offset by corresponding changes in ER, and that therefore, the NEE may be relatively insensitive to climate change. However, evaluation of this hypothesis using eddy-covariance must consider the problem of self-correlation. Self-correlation (Hicks, 1978; Klipp and Mahrt, 2004; Baas et al., 2006) has also been referred to as spurious correlation (Pearson, 1897; Kenney, 1982; Jackson and Somers, 1991; Brett, 2004) and as the shared variable problem in the statistics literature. It arises when one group of variables is plotted against another, and the two groups have one or more variables in common. For example, $x + y$ and x are self-correlated because they share the common variable x. For variables suffering from self-correlation, the coefficient of determination is not directly related to the quality of the data or to the validity of the relationship being considered.

The self-correlation must be taken into account when interpreting observations to develop relationships (e.g., Perrie and Toullany, 1990; Mahrt and Vickers, 2003; Hsu and Blanchard, 2004; Lange et al., 2004; Klipp and Mahrt, 2004; Mauritsen and Svensson, 2007). Normally a small correlation indicates no relationship between the variables being compared, however, when the variables tested share a common variable or factor, even random...
data can produce large correlation (Kim, 1999). This self-correlation is a better reference point of no real relationship than $R^2 = 0$. Following Klipp and Mahrt (2004), we take the difference between the variance explained by the observations and the variance explained by self-correlation as a measure of the variance explained by real underlying processes. The difference is not a true variance in that it can be negative. In this study we calculate the self-correlation between GEP and ER using 6 years of eddy-covariance and chamber measurements collected at a pine forest site. The flux partitioning is performed for two approaches for estimating respiration: (1) using nocturnal eddy-covariance measurements to develop time- and temperature-dependent models of ER which are then extrapolated to the daytime, and (2) using automated soil chamber measurements to estimate ER. The self-correlation is computed using two methods: (1) a general method that assumes no special relationships between the variables, and (2) a more refined method specific to CO$_2$ flux partitioning. Results are presented for a range of averaging timescales.

2. Methods

2.1. Site description and measurements

The site is a semi-arid, 90-yr-old ponderosa pine forest in Central Oregon, U.S.A. (Irvine et al., 2008). The pine canopy extends from 10 to 16 m above ground, while the understory consists of scattered 1-m tall shrubs. The leaf area index (LAI) ranges from 3.1 to 3.4 during the growing season and the stand density is 325 trees ha$^{-1}$. Although the site is located on a relatively flat sandstone region about 600 m across, it is surrounded by complex terrain.

Eddy-covariance measurements were collected using a Campbell Scientific CSAT3 sonic anemometer and an open-path LICOR-7500 gas analyzer at 33 m above ground (or about twice the canopy height). Additional measurements include vertical profiles of air temperature (HOBOb thermistors) and mean CO$_2$ concentrations using a LICOR-6262 with inlets at 1, 3, 6, 15 and 33 m above ground. The CO$_2$ profile system was replaced by a new system with a LICOR-820 gas analyzer with inlets at 0.3, 1, 3, 6, 10, 18 and 33 m above ground in August of 2006. An estimate of ecosystem respiration based on chamber measurements was made by combining high temporal resolution (1-h average) data from an automated soil respiration system (Irvine and Law, 2002) with estimates of foliage and live wood respiration derived from temperature response functions specific to ponderosa pine (Law et al., 1999). The soil chamber estimates include the respiration from fine woody debris. Extensive periodic manual soil respiration measurements from a LICOR-6400 with a LICOR-6000-9 soil chamber were used to scale the automated chamber measurements as described in Irvine et al. (2008). The data analyzed here were collected during 2002 through 2007.

2.2. Data processing

A brief overview of the data processing and gap-filling techniques is presented here. Raw 10/20 Hz eddy-covariance data and 30-min fluxes and variances were subjected to quality control based on a combination of tests for plausibility, stationarity and well-developed turbulence (Foken et al., 2004). For nighttime periods, gaps in the NEE time series were filled using a temperature response (Arrhenius-type) model with separate coefficients for different soil moisture categories, and for the daytime, gaps in the NEE were filled using a light response model with separate coefficients for different temperature and soil moisture classes (Ruppert et al., 2006). The daytime NEE estimates were partitioned into assimilation and respiration components by extrapolating the nighttime approach into daytime conditions. NEE was calculated as the sum of the eddy-covariance flux and the storage term. To gap-fill the respired CO$_2$ from the soil chamber measurements, a multivariable regression approach was used where the predictor variables include air temperature, soil temperature, net radiation, soil moisture and vapor pressure deficit.

2.3. Self-correlation: Method I

With the gap-filled estimates of ER and NEE based on measurements and/or modeling as described above, the GEP is calculated as a residual

$$GEP = NEE - ER$$

(1)
to balance the budget, and therefore, GEP and ER are self-correlated because they both contain ER. Such self-correlation is the same sign as the expected correlation, and if large enough can lead to false confidence in the hypothesis that variations of GEP and ER are tightly coupled.

We define the self-correlation using the following procedure after Klipp and Mahrt (2004): A uniform random number generator is used to create a random sequence of length N of integer values between 1 and N, where N is the length of the observed series. Random permutations of the 24-h sums of NEE and ER are created using the random sequence as index pointers into the pool of observed values. Given the random and uncorrelated permutations of NEE and ER, the GEP is calculated as a residual and the correlation is computed between GEP and ER. Because the random permutations no longer retain any real connections between GEP and ER, the correlation computed from such series has no physical meaning and is a measure of the self-correlation due to GEP and ER sharing a common variable (Hicks, 1978; Andreas and Hicks, 2002; Mahrt and Vickers, 2003; Klipp and Mahrt, 2004; Baas et al., 2006). This process is repeated for many realizations to construct the probability distribution of the self-correlation. Using randomized actual data to evaluate the self-correlation, rather than data synthesized by a random number generator, is preferred because the frequency distribution of the observed data is reproduced in the random permutation (Kim, 1999).

2.4. Kenney (1982)

Here we briefly discuss the work by Kenney (1982) on spurious correlation and reconcile it with our numerical approach described above. Kenney (1982) defines variables $A = x + y$ and $B = x$, where x and y are measured quantities and the relationship between A and B is of interest. In terms of such a relationship, x is a shared variable and therefore some or all of the correlation between A and B may be spurious. He then develops the expression for the correlation between A and B in terms of the variances and covariance of x and y (r_{AB}) in his Eq. (5). However, at this point in his development Kenney (1982) generates some confusion (in our opinion) by calling r_{AB} the “spurious self-correlation coefficient”, while in fact, it is simply the correlation between A and B. We would prefer different wording to make it clear that some fraction of the correlation between A and B may be spurious, but not all of it. This confusion may have led to some of the past discussion on this issue (Prairie and Bird, 1989; Kenney, 1991).

In terms of our notation (Tables 1 and 2), Eq. (5) for r_{AB} in Kenney (1982) is equivalent to our R_{ROBS}, which is simply the observed correlation between A and B, or in our case between GEP and ER. His Eq. (6) is our R_{SC}, or the self-correlation, which is the correlation between A and B when x and y (our NEE and ER) are random uncorrelated permutations of the observations. R_{SC} is a measure of the self-correlation because when there are no real
connections between x and y (NEE and ER) any correlation found between A and B (GEP and ER) can arise only from the shared variable problem.

Kenney (1982) showed that the magnitude of the self-correlation for this particular example depends only on the ratio of the variance of x (the shared variable) and y (the unique variable),

$$r_{SC} = \frac{1}{(1 + (S_x/S_y)^2)^{1/2}}.$$

when and y are random uncorrelated permutations and S denotes the standard deviation. The self-correlation is greater when there is larger dispersion (variance) for the common term compared to the unique term. The expected value of the self-correlation from the numerical method described above agrees with Eq. (2).

2.5. Self-correlation: Method II

In this section we describe an alternate method to estimate the self-correlation specifically for CO$_2$ flux partitioning by taking advantage of a special characteristic of GEP. Consider replacing the 24-h sums used in Method I with sums over daytime and nighttime hours, in which case Eq. (1) becomes

$$GEP_D + GEP_N = NEE_D + NEE_N - ER_D - ER_N$$

where subscript D denotes a sum over daytime, and N denotes a sum over nighttime hours. Using the fact that GEP$_N$ is zero (no photosynthesis in the absence of light), and that NEE$_N$ is equivalent to ER$_N$ (again because GEP$_N$ is zero), reduces the above expression to

$$GEP_D = NEE_D - ER_D.$$

which potentially involves only daytime measurements, however, this distinction is somewhat blurred when ER$_D$ is estimated based on temperature-dependent models tuned to the nocturnal eddy-covariance measurements.

The self-correlation between GEP and ER in Method II is computed using the same numerical approach described above, however, here the random uncorrelated permutations are generated for NEE$_D$, ER$_D$ and ER$_N$, and the correlation is computed between (NEE$_D$ − ER$_D$) and (ER$_D$ + ER$_N$). In Method II, there are two unique variables (NEE$_D$ and ER$_N$) and the single shared variable is ER$_D$. In Method I, there is one unique variable (NEE) and a single shared variable (ER).

Table 1

<table>
<thead>
<tr>
<th>Timescale</th>
<th>N</th>
<th>Method I</th>
<th>Method II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{RBS}</td>
<td>R_{RC}</td>
<td>R_{RREAL}</td>
</tr>
<tr>
<td></td>
<td>R_{RBS}</td>
<td>R_{RC}</td>
<td>R_{RREAL}</td>
</tr>
<tr>
<td>1 day</td>
<td>2190</td>
<td>0.62</td>
<td>0.54</td>
</tr>
<tr>
<td>1 week</td>
<td>312</td>
<td>0.72</td>
<td>0.60</td>
</tr>
<tr>
<td>1 month</td>
<td>72</td>
<td>0.79</td>
<td>0.64</td>
</tr>
<tr>
<td>3 months</td>
<td>24</td>
<td>0.80</td>
<td>0.66</td>
</tr>
</tbody>
</table>

3. Results

The self-correlation is significantly larger than zero and not small compared to the observed correlation (Table 1). This result is found for both Methods I and II, although the self-correlation is substantially reduced using Method II. Averaging over all timescales tested, the variance explained by self-correlation (R_{RBS}^2) is about 80% of the observed variance explained for Method I, and about 50% for Method II. That is, about one-half of the observed variance of ER explained by GEP is due to the shared variable problem even for Method II, and as a consequence, the real variance explained (R_{RREAL}^2) in Table 1 is about one-half of the observed. For example, although the observed variance explained between GEP and ER reaches as high as $R^2 = 0.82$ for the approach using the chamber data for a 3-month timescale, our Method II analysis indicates that 46% of that observed variance explained is due to self-correlation.

The magnitude of the self-correlation is not strongly sensitive to the choice of using nocturnal eddy-covariance or chamber measurements to estimate the respiration, although there are subtle differences for this site (Table 2). The R_{RREAL}^2 values are slightly larger when using the automated chamber data because the variance of the shared variable is smaller. The observed variance explained (R_{RREAL}^2) is slightly larger for the chamber approach, and the majority of this additional observed variance explained appears to be real, and not associated with self-correlation.

The Method II estimates of self-correlation are smaller than those from Method I primarily because the variance of the shared variable is considerably smaller in Method II. The variance of ER (the shared variable in Method I) is greater than the variance of ER$_D$ (shared variable in Method II) in part because ER$_D$ and ER$_N$ are positively correlated ($r = 0.75$). That is, 24-h periods with large daytime respiration are also associated with large nighttime respiration.

The variance explained by the observed data (R_{RBS}^2) increases with increasing timescale for the range of timescales tested here, however, so does the variance explained due to self-correlation (Table 1). Because R_{RBS}^2 increases slightly faster with increasing timescale than does R_{RC}^2, the variance explained that can attributed to real underlying processes tends to increase with increasing timescale. R^2 values found for the annual timescale (not shown) are not statistically significant in part because of the limited sample size ($N = 6$ yr).

Table 2

<table>
<thead>
<tr>
<th>Timescale</th>
<th>N</th>
<th>Method I</th>
<th>Method II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{RBS}</td>
<td>R_{RC}</td>
<td>R_{RREAL}</td>
</tr>
<tr>
<td></td>
<td>R_{RBS}</td>
<td>R_{RC}</td>
<td>R_{RREAL}</td>
</tr>
<tr>
<td>1 day</td>
<td>2190</td>
<td>0.65</td>
<td>0.53</td>
</tr>
<tr>
<td>1 week</td>
<td>312</td>
<td>0.75</td>
<td>0.60</td>
</tr>
<tr>
<td>1 month</td>
<td>72</td>
<td>0.81</td>
<td>0.64</td>
</tr>
<tr>
<td>3 months</td>
<td>24</td>
<td>0.82</td>
<td>0.64</td>
</tr>
</tbody>
</table>

4. Conclusions

Current standard methods of CO$_2$ flux partitioning applied to eddy-covariance measurements result in levels of self-correlation between assimilation and respiration that are too large to ignore (Tables 1 and 2). The self-correlation is due to the shared variable problem. At the site studied here, the self-correlation is slightly smaller using estimates of respiration based on automated chamber data compared to models based on nocturnal eddy-covariance data, and the estimates of self-correlation are substantially reduced by partitioning into daytime and nighttime periods and noting that assimilation is zero at night. The reduction in self-correlation found by the day/night partitioning method can be explained by the smaller variance of the shared variable. With or without the day/night partitioning, and for both approaches to estimating respiration (eddy-covariance or chambers), and for all averaging timescales tested, our results indicate that the self-correlation is not small.

Although the estimates of self-correlation are uncertain, and the results found here may not apply to all flux tower sites, we conclude that the self-correlation should be accounted for when
estimating the strength of the relationship between GEP and ER. Our main conclusion does not suggest that there is no strong causal relationship between assimilation and respiration, only that when such a relationship is based on eddy-covariance measurements and standard flux partitioning methods one must consider the magnitude of the self-correlation.

Acknowledgments

This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant DE-FG02-06ER64318. The two reviewers are gratefully acknowledged for their suggestions to improve the manuscript. We also thank Dennis Baldocchi and Markus Reichstein for their contributions.

References

Brett, M.T., 2004. When is correlation between non-independent variables “spurious”? Oikos 105, 647–656.

Pearson, K., 1897. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–502.

