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Abstract
Aim: The	mechanisms	of	plant	trait	adaptation	and	acclimation	are	still	poorly	un‐
derstood	and,	consequently,	lack	a	consistent	representation	in	terrestrial	biosphere	
models	 (TBMs).	 Despite	 the	 increasing	 availability	 of	 geo‐referenced	 trait	 obser‐
vations,	 current	 databases	 are	 still	 insufficient	 to	 cover	 all	 vegetation	 types	 and	
environmental	conditions.	 In	parallel,	 the	growing	number	of	continuous	eddy‐co‐
variance	observations	of	energy	and	CO2	fluxes	has	enabled	modellers	to	optimize	
TBMs	with	these	data.	Past	attempts	to	optimize	TBM	parameters	mostly	focused	
on	model	performance,	overlooking	 the	ecological	 properties	of	 ecosystems.	The	
aim	of	this	study	was	to	assess	the	ecological	consistency	of	optimized	trait‐related	
parameters	while	improving	the	model	performances	for	gross	primary	productivity	
(GPP)	at	sites.
Location: Worldwide.
Time period: 1992–2012.
Major taxa studied: Trees	and	C3	grasses.
Methods: We	optimized	parameters	of	the	ORCHIDEE	model	against	371	site‐years	
of	GPP	estimates	from	the	FLUXNET	network,	and	we	looked	at	global	covariation	
among	parameters	and	with	climate.
Results: The	optimized	parameter	values	were	shown	to	be	consistent	with	leaf‐scale	
traits,	in	particular,	with	well‐known	trade‐offs	observed	at	the	leaf	level,	echoing	the	
leaf	economic	spectrum	theory.	Results	showed	a	marked	sensitivity	of	trait‐related	
parameters	to	local	bioclimatic	variables	and	reproduced	the	observed	relationships	
between	traits	and	climate.
Main conclusions: Our	approach	validates	some	biological	processes	implemented	in	
the	model	and	enables	us	to	study	ecological	properties	of	vegetation	at	the	canopy	
level,	in	addition	to	some	traits	that	are	difficult	to	observe	experimentally.	This	study	
stresses	the	need	for:	(a)	implementing	explicit	trade‐offs	and	acclimation	processes	
in	TBMs;	(b)	 improving	the	representation	of	processes	to	avoid	model‐specific	pa‐
rameterization;	and	 (c)	performing	systematic	measurements	of	 traits	at	FLUXNET	
sites	 in	order	 to	gather	 information	on	plant	ecophysiology	and	plant	diversity,	 to‐
gether	with	micro‐meteorological	conditions.

K E Y W O R D S

data	assimilation,	optimization,	ORCHIDEE,	plant	acclimation,	plant	functional	traits,	
terrestrial	model
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1  | INTRODUC TION

Terrestrial	 biosphere	 models	 (TBMs)	 describe	 the	 different	 pro‐
cesses	controlling	exchanges	of	energy	and	trace	gases	between	the	
atmosphere	and	the	biosphere.	Process‐based	TBMs	are	useful	tools	
for	understanding	the	dynamics	of	ecosystems	under	changing	envi‐
ronment,	for	present‐day	to	future	conditions.

In	most	 TBMs,	 the	worldwide	 vegetation	 is	 divided	 into	 plant	
functional	types	(PFTs)	based	on	general	characteristics	of	the	photo‐
synthetic	pathways,	phenology,	structure	and	physiology.	Different	
PFTs	usually	share	the	same	equations	but	use	different	parameter	
values	 to	describe	 generic	 processes	 (photosynthesis,	 respiration),	
whereas	biome‐specific	equations	may	be	used	for	phenology	and	
allocation.	Therefore,	for	a	given	PFT,	only	the	differences	in	climate	
and	soil	properties	can	determine	spatial	and	temporal	gradients	in	
ecosystem	state	variables.

The	 prescribed	 values	 of	 PFT‐specific	 parameters	 are	 derived	
from	 discrete	 observations	 obtained	 at	 varying	 spatial	 scales	 (or‐
gans,	 individuals	 or	 ecosystems;	 Kattge,	 Knorr,	 Raddatz,	 &	Wirth,	
2009;	Reich,	Wright,	&	 Lusk,	 2007)	 and	 in	 specific	 environmental	
conditions,	despite	the	modulation	of	real‐world	plant	traits	by	cli‐
mate	(Maire	et	al.,	2015;	Ordoñez	et	al.,	2009;	van	Ommen	Kloeke,	
Douma,	Ordonez,	Reich,	&	Bodegom,	2012;	Wright	et	al.,	2005)	and	
soil	 properties	 (Fisher,	 Badgley,	 &	 Blyth,	 2012).	 In	 addition,	 some	
TBM	 parameters	 relate	 to	 traits	 that	 are	 difficult	 to	 measure	 ex‐
perimentally	(e.g.,	root	turnovers	or	carbon	allocation)	or	are	model	
specific.	These	parameters	can	hardly	be	optimized	directly	from	ob‐
servations,	and	their	adjustment	to	varying	environmental	conditions	
can	be	determined	only	by	labour‐intensive	multifactorial	ecosystem	
manipulation	experiments	(Luo,	Jiang,	Niu,	&	Zhou,	2017).	This	rigid	
determination	of	parameter	values,	 combined	with	 the	use	of	 sin‐
gle	PFTs	to	cover	a	range	of	different	species	(Peaucelle,	Bellassen,	
Ciais,	Peñuelas,	&	Viovy,	2017),	hinders	a	realistic	representation	of	
the	past,	present	and	future	ecosystem	dynamics,	at	both	the	local	
and	the	regional	scale,	and	their	response	to	global	drivers,	such	as	
climate,	elevated	CO2	 and	nutrient	 fertilization	 (Atkin	et	al.,	2015;	
Hartig	et	al.,	2012;	Kroner	&	Way,	2016;	Reich	et	al.,	2016).

To	overcome	the	rigidity	of	the	PFT	representation,	various	ap‐
proaches	have	been	proposed	 to	provide	 continuous	distributions	
of	 plant	 functional	 traits	 related	 to	 model	 parameters.	 These	 ap‐
proaches	range	from	extrapolating	trait	observations	across	spatial	
gradients	 (Verheijen	et	al.,	2015)	to	estimating	optimal	trait	values	
according	 to	 ecological	 theories	 and	 plant‐centred	 approaches	
(Pavlick,	 Drewry,	 Bohn,	 Reu,	 &	 Kleidon,	 2013;	 Prentice,	 Dong,	
Gleason,	Maire,	&	Wright,	2014;	Reu	et	al.,	2011).	The	drawback	of	
these	different	approaches	is	that	they	require	both	spatial	and	tem‐
poral	observations	for	model	calibration	and/or	validation.	Despite	
the	increasing	number	of	geo‐referenced	trait	observations	(Kattge	
et	 al.,	 2011),	 current	 databases	 are	 insufficient	 to	 cover	 all	 vege‐
tation	 types	 and	 environmental	 conditions	 for	 projections	 at	 the	
ecosystem	level	 (Musavi	et	al.,	2015,	2016).	Moreover,	trait	obser‐
vations	should	be	co‐located	with	process	and	meteorology	data	to	
understand	linkages	between	traits	and	ecosystem	function	(Law	et	

al.,	2008),	which	is	rare	in	existing	databases,	although	increasingly	
being	addressed	for	some	biomes	(Bjorkman	et	al.,	2018).	Long‐term	
monitoring	of	functional	traits	is	needed	to	assess	the	adjustments	
to	 climate.	Given	 that	 such	 information	 is	 still	 lacking,	 approaches	
have	been	developed	that	confound	the	spatial	and	temporal	dimen‐
sions	of	trait	variability.

Another	modelling	strategy	consists	of	optimizing	TBMs	against	
observed	variables	sensitive	to	ecosystem‐level	parameters	in	order	
to	overcome	these	limitations.	This	approach	assumes	that	the	model	
structure	is	unbiased,	so	that	realistic	parameters	values	can	be	esti‐
mated	when	model	simulations	best	match	observations.	Given	that	
biometric	variables	are	sparse	and	often	depend	on	processes	not	
represented	in	models	(Thum	et	al.,	2017),	energy	and	trace	gas	flux	
measurements	are	more	appealing	to	optimize	TBM	parameters.

Eddy‐covariance	data	provide	near‐continuous	observations	of	
CO2,	 latent	 heat	 and	 sensible	 heat	 fluxes,	 and	 are	 therefore	 well	
suited	 for	 better	 constraining	photosynthesis,	 respiration,	 transpi‐
ration	 and	 carbon	 phenology	model	 parameters.	 Eddy‐covariance	
measurements	have	been	used	extensively	to	improve	specific	per‐
formances	of	TBMs	(i.e.,	their	ability	to	reproduce	specific	observed	
ecosystem	behaviours;	Carvalhais	et	al.,	2010;	Kuppel	et	al.,	2012;	
Santaren,	Peylin,	Bacour,	Ciais,	&	Longdoz,	2014;	Schürmann	et	al.,	
2016).	However,	such	model	calibrations	are	disconnected,	by	con‐
struction,	from	ecological	theory	or	trait‐based	relationships	and	do	
not	exploit	the	full	potential	of	continuous	flux	observations	across	
the	globe,	which	provide	both	spatial	and	temporal	information.

In	this	study,	we	aim	to	assess	the	consistency	of	model	trait	param‐
eters	optimized	against	eddy‐covariance	 flux	 tower	measurements	of	
growth	primary	productivity	(GPP)	using	the	state‐of‐the‐art	Organising	
Carbon	and	Hydrology	In	Dynamic	Ecosystems	(ORCHIDEE)	land	sur‐
face	model	 (Krinner	et	al.,	2005).	 In	addition	to	classical	optimization	
analyses	(i.e.,	 looking	for	the	optimal	parameter	sets	that	result	in	the	
greatest	model	 improvement),	we	focus	here	on	the	variability	of	op‐
timized	parameter	values	and	on	inter‐traits	correlations	or	trait–envi‐
ronment	correlations.	By	doing	so,	we	address	the	following	research	
questions:	 (a)	 are	 the	 parameters	 retrieved	 by	 optimizing	 the	 model	
against	flux	tower	records	consistent	with	known	relationships	between	
traits	(i.e.,	trade‐offs),	or	(b)	between	traits	and	environmental	variables?	
(c)	What	new	relationship	can	be	identified	with	this	approach?

2  | METHODS

2.1 | The ORCHIDEE model

The	land	surface	model	ORCHIDEE	(v.1.9.6,	without	nitrogen	cycle)	
computes	 biosphere–atmosphere	 exchanges,	 consistently	 with	
water	 and	 carbon	 storage,	 using	 ordinary	 differential	 equations	
(Krinner	et	al.,	2005)	 (Figure1).	Given	meteorological	forcing,	plant	
and	soil	conditions,	the	model	simulates	photosynthesis,	all	compo‐
nents	of	the	surface	energy	budget	and	hydrological	processes	with	
a	half‐hourly	time	step,	whereas	the	dynamics	of	carbon	storage	are	
calculated	daily.	 In	ORCHIDEE,	 the	 land	surface	 is	discretized	 into	
12	PFTs	and	bare	soil	 (Supporting	 Information	Appendix	S1,	Table	
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S1.1).	All	PFTs	share	the	same	equations	but	use	different	parameter	
values,	except	 for	phenology	 (budburst/senescence),	which	 is	PFT	
specific	(Botta,	Viovy,	Ciais,	Friedlingstein,	&	Monfray,	2000).

2.2 | Eddy‐covariance gross primary productivity

We	used	half‐hourly	 flux	observations	 from	eddy‐covariance	 sites	
within	 the	 FLUXNET	 network	 (https	://fluxn	et.fluxd	ata.org).	 The	
sites	 were	 selected	 on	 the	 basis	 of	 spatial	 homogeneity	 and	 the	
dominance	of	a	vegetation	type	that	could	be	matched	easily	to	one	
of	the	PFTs	in	ORCHIDEE,	excluding	crops	and	C4	grasses.	The	veg‐
etation	type	information	at	each	site	was	obtained	from	http://fluxn	
et.ornl.gov.	A	list	of	analysed	FLUXNET	sites	(98	sites,	371	site‐years)	
and	the	corresponding	PFTs	is	given	in	the	Supporting	Information	
(Appendix	S2).	The	following	analyses	rely	on	GPP	derived	from	net	
ecosystem	exchange	(NEE;	reference	with	variable	USTAR	‐	friction	
velocity	 threshold)	after	accounting	 for	ecosystem	respiration	cal‐
culated	using	the	method	of	Reichstein	et	al.,	(2005)	provided	in	the	
FLUXNET	dataset.	Years	with	<80%	of	available	half‐hourly	obser‐
vations	were	discarded.

2.3 | Meteorological data

Given	 that	ORCHIDEE	needs	continuous	half‐hourly	meteorological	
forcing,	we	 filled	 the	 gaps	 in	 time	 series	 of	weather	variables	 using	
the	interpolation	algorithm	developed	by	Vuichard	and	Papale	(2015).	

Linear	interpolation	was	applied	between	available	observations	when	
the	gap	duration	in	the	meteorological	data	was	<6	h.	Otherwise,	the	
variables	were	interpolated	and	bias	corrected	using	the	ERA‐interim	
re‐analysis	(c.	80	km;	Dee	et	al.,	2011).	Snow	and	rain	were	identified	
according	to	air	temperature	(threshold	for	snow	being	0°C).

2.4 | Data assimilation procedure

The	parameters	of	ORCHIDEE	were	optimized	with	the	ORCHIDAS	
package	 developed	 by	 Kuppel	 et	 al.	 (2012),	 Bacour	 et	 al.	 (2015),	
MacBean	et	al.	(2015)	and	Peylin	et	al.	(2016)	(https	://orchi	das.lsce.
ipsl.fr/;	Figure	1).	Gaussian	distributions	of	parameter	and	observa‐
tion	errors	were	assumed,	and	a	gradient‐based	approach	was	used	
to	minimize	the	Bayesian	cost	function,	J	(Tarantola,	2005):

This	 function	quantifies	 the	difference	between	observations	
(y)	and	simulations	[H(x);	here,	GPP),	and	between	a	priori	(xb)	and	
optimized	parameters	(x).	The	B and R	matrices	are	the	prior	error	
covariance	matrices	for	parameters	and	observations,	respectively	
(including,	 in	 the	 latter	 case,	 eddy‐covariance	 measurement	 and	
model	errors).

Both	R and B	were	 taken	 as	 diagonal,	 as	 discussed	 by	Kuppel	
et	 al.	 (2012).	 The	 J(x)	 function	was	minimized	 iteratively	with	 the	
L‐BFGS‐B	 algorithm	 (Byrd,	 Lu,	 Nocedal,	 &	 Zhu,	 1995),	 which	 no‐
tably	allows	bounding	 the	 range	of	variation	of	 the	parameters	 to	

(1)J (x)=
1

2

[

(

y−H (x)
)T

R
−1 (

y−H (x)
)

+
(

x−xb
)T

B
−1 (

x−xb
)

]

F I G U R E  1  Schematic	representation	
of	the	modelling	protocol	followed	in	
this	study.	For	each	FLUXNET	site‐year	
(blue),	the	model	ORCHIDEE	(green)	
was	calibrated	with	the	data	assimilation	
system	ORCHIDAS	(red)	in	order	to	
reproduce	gross	primary	productivity	
(GPP)	observations.	The	ORCHIDAS	
system	uses	a	gradient‐based	approach	
(L‐BFGS‐B)	to	reduce	the	cost	function	
J(x).	For	each	site‐year,	14	parameters	
(listed	in	Table	1)	were	optimized	10	times	
with	different	initial	values.	The	best	
calibration	[i.e.,	leading	to	the	minimum	
value	of	J(x)]	was	retained.	This	procedure	
was	repeated	for	each	site‐year,	resulting	
in	371	sets	of	14	independently	optimized	
parameters.	Finally,	correlations	between	
optimized	parameters	and	climate	were	
explored	using	standardized	major	axis	
regressions	[Colour	figure	can	be	viewed	
at	wileyonlinelibrary.com]

https://fluxnet.fluxdata.org
http://fluxnet.ornl.gov
http://fluxnet.ornl.gov
https://orchidas.lsce.ipsl.fr/
https://orchidas.lsce.ipsl.fr/
www.wileyonlinelibrary.com
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optimize.	 After	model	 calibration	 (i.e.,	minimizing	 J),	 the	 posterior	
error	covariance	matrix	(A),	providing	the	full	statistical	distribution	
of	the	optimized	parameters	was	estimated	by:

where	H	is	the	Jacobian	of	the	model	at	the	minimum	of	J	(Tarantola,	
2005).	The	 covariances	of	 errors	between	parameters	 contained	 in	
the	non‐diagonal	terms	of	A	inform	about	the	ability	of	observations	
given	 the	 structure	 of	H	 to	 solve	 for	 parameters	 individually	 or	 in	
combination.	High	error	covariance	between	two	parameters	relates	
to	the	equifinality	problem,	whereby	different	values	of	these	param‐
eters	result	in	model	outputs	equally	matching	the	observations	(rel‐
ative	to	R).

2.5 | Optimized parameters

We	restricted	our	exercise	to	the	parameters	involved	in	the	assimila‐
tion	of	CO2,	following	previous	sensitivity	analyses	from	Kuppel	(2012).	

We	 analysed	 14	 parameters	 controlling	 long‐term	 and	 inter‐annual	
GPP	variability	 (Table	1).	The	key	equations	 involving	each	optimized	
parameter	and	their	effect	on	the	simulated	GPP	are	described	in	the	
Supporting	 Information	 (Appendix	 S1,	 Table	 S1.2).	 The	 parameters	
were	 related	 to	 photosynthetic	 capacity,	 phenology,	 carbon	 alloca‐
tion	and	the	water	budget.	Photosynthetic	capacity	parameters	were	
the	maximal	 rate	 of	 carboxylation	 limited	 by	 CO2	 (Vcmax),	 the	 ratio	
between	the	maximal	rate	of	carboxylation	limited	by	light	and	Vcmax 
(Vj/Vc),	the	optimal	temperature	of	photosynthesis	(Topt)	and	the	slope	
of	the	Ball–Berry	model	for	stomatal	conductance	(gslope).	Parameters	
driving	phenology	were	the	specific	leaf	area	(SLA),	leaf	longevity	(Lage),	
summer	maximal	leaf	area	index	(LAImax)	and	the	temperature	for	leaf	
senescence	(Csenes).	Allocation	parameters	were	the	minimal	fraction	
of	LAImax	 for	 the	use	of	carbohydrate	 reserves	 (Klai)	 and	 the	period	
after	budburst	during	which	the	use	of	carbohydrates	is	allowed	(tau‐
leaf)	for	the	formation	of	new	leaves.	Finally,	two	parameters	involved	
in	 the	water	status	of	 the	plant	were	the	exponential	 factor	describ‐
ing	 the	 root	 profile	 and	 length	 (Kroot)	 and	 the	minimal	 threshold	 at	
which	 photosynthesis	 becomes	 limited	 by	 minimum	water	 potential	
(Wlim).	 In	addition,	two	scaling	factors,	Kbm	 (initial	biomass	of	 leaves	

(2)A=

[

H
T
R
−1
H+B−1

]−1

Parameter Description (units) Processes involved

SLA Specific	leaf	area	(in	square	metres	per	
gram	of	carbon)

Photosynthesis,	phenology,	
allocation

Lage Leaf	lifespan	(in	days) Photosynthesis,	Phenology

Vcmax Maximal	carboxylation	rate	limited	by	
CO2	(in	micromoles	per	square	metre	per	
second)

Photosynthesis

Vj/Vc Ratio	between	the	maximal	carboxylation	
rate	limited	by	light	and	Vcmax

Photosynthesis

Topt Optimal	temperature	of	the	photosynthesis	
(in	degrees	Celsius)

Photosynthesis

gslope Slope	of	the	Ball–Berry	relationship	for	the	
stomatal	conductance

Photosynthesis,	energy	
budget

LAImax Maximal	leaf	area	index Photosynthesis,	phenology,	
allocation

Klai Minimal	fraction	of	LAImax	for	the	use	of	
carbohydrate	reserves

Allocation

bbdate Budburst	date	(day	of	the	year) Phenology

tauleaf Period	after	budburst	during	which	the	use	
of	carbohydrates	is	allowed

Allocation

Csenes Temperature	for	leaf	senescence	(used	only	
for	deciduous)

Phenology

Kbm Multiplicative	factor	for	the	initial	leaf	
biomass	(used	only	for	evergreens)

Phenology,	allocation

Kroot Exponential	factor	describing	the	root	
profile	and	depth

Water	budget,	
photosynthesis

Wlim Minimal	threshold	at	which	the	photo‐
synthesis	becomes	limited	by	water	
availability

Photosynthesis

Note: All	the	parameters	are	common	to	each	plant	functional	type.	Kbm and bbdate	are	scaling	
factors	added	to	the	model	to	improve	the	optimization	of	the	seasonal	cycle	of	the	gross	primary	
productivity	but	are	not	analysed	in	the	study	(for	the	detailed	equations	involving	each	parameter,	
see	the	Supporting	Information	(Appendix	S1,	Table	S1.2).

TA B L E  1  Description	of	the	14	
optimized	parameters	and	associated	
processes
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for	evergreen	species)	and	bbdate	(spring	burdburst	date),	were	added	
in	the	optimization	to	allow	adjustment	of	the	seasonal	timing	of	GPP.

The	range	in	variation	of	the	three	parameters	corresponding	to	
observable	traits	(SLA,	Vcmax and Lage)	was	set	from	the	TRY	data‐
base	 for	 each	 PFT	 (Azevedo	&	Marenco,	 2012;	Cernusak,	Hutley,	
Beringer,	Holtum,	&	Turner,	2011;	Deng	et	al.,	2004;	Domingues	et	
al.,	2010;	Kattge	et	al.,	2009,	2011;	Meir,	Levy,	Grace,	&	Jarvis,	2007;	
Nascimento	&	Marenco,	2013;	Niinemets,	Oja,	&	Kull,	1999;	van	de	
Weg,	Meir,	Grace,	&	Ramos,	2012).	Species	from	the	TRY	database	
were	assigned	to	corresponding	PFTs	based	on	available	metadata	
about	 plant	 structure,	 leaf	 phenology	 and	 climate	 information	 ex‐
tracted	from	species'	latitude	and	longitude	coordinates.	We	chose	
as	a	reference	range	the	2.5th–97.5th	percentile	of	the	trait	distribu‐
tions	from	TRY.	The	variation	ranges	for	the	other	parameters	were	
fixed	based	on	expert	judgement	(Kuppel	et	al.,	2014).

2.6 | Simulations and assimilation set‐up

At	 each	 flux	 tower	 site,	 we	 assumed	 that	 the	 eddy‐covariance	
flux	 footprint	was	 entirely	 composed	 by	 a	 single	 PFT	 (Supporting	
Information	 Appendix	 S2).	 The	 model	 was	 forced	 by	 local	 mete‐
orological	observations	 (see	Section	2.3)	and	soil	 texture	from	the	
harmonized	worldwide	soil	database	 (Nachtergaele	et	al.,	2012)	to	
define	the	residual	and	saturation	water	contents,	and	the	saturated	
hydraulic	conductivity	in	the	soil	model	(Ducoudré,	Laval,	&	Perrier,	
1993;	Krinner	et	al.,	2005)	based	on	Van	Genuchten	 (1980).	 Initial	
soil	 carbon	 pools	 in	 equilibrium	with	 local	 climate	 were	 obtained	
with	an	analytical	spin‐up	procedure	(Lardy,	Bellocchi,	&	Soussana,	
2011;	Xia,	Luo,	Wang,	Weng,	&	Hararuk,	2012).	Initial	biomass	was	
simulated	 until	 reaching	 equilibrium	 (generally	 after	 ac.	 300‐year‐
long	simulation	using	the	studied	year	meteorological	data	and	con‐
stant	CO2	set	to	the	level	of	the	year),	thus	different	from	the	real	
stand	age	observed	at	each	site.

We	 optimized	 GPP	 averaged	 over	 15	 days	 using	 moving	 win‐
dows	to	avoid	noise	from	high‐frequency	variations	in	the	parame‐
ter	optimization	that	could	induce	convergence	issues	(Bacour	et	al.,	
2015).	As	far	as	test	data	from	eddy‐covariance	measurements	are	
concerned,	high‐frequency	variations	in	fluxes	also	include	variation	
in	the	boundary	layer	that	are	unrelated	to	the	fluxes	at	the	surface	
(Ibrom	et	al.,	2006).	Santaren,	Peylin,	Viovy,	and	Ciais	 (2007)	esti‐
mated	that	for	parameters	related	to	photosynthesis	and	phenology,	
optimization	based	on	half‐hourly	observations	did	not	improve	the	
results.	For	each	site,	the	optimizations	were	conducted	year	by	year	
to	account	for	trait	variability	over	time	(Wu	et	al.,	2013).

Following	 MacBean	 et	 al.	 (2015),	 each	 calibration	 (site‐year)	
used	 10	 replicates	 representing	 different	 starting	 parameter	 sets,	
with	 values	 randomly	 picked	 within	 their	 allowed	 variation	 range	
(Supporting	Information	Appendix	S1,	Table	S1.3).	Only	the	best	cal‐
ibration	out	of	 these	10	 replicates	was	 retained	 for	analyses.	This	
procedure	increases	the	chances	of	finding	the	global	minimum	of	J,	
because	Santaren	et	al.	(2014)	showed	that	the	gradient‐based	algo‐
rithm	was	sensitive	to	initial	conditions	with	a	nonlinear	and	complex	
model,	such	as	ORCHIDEE.

2.7 | Analyses

We	retained	only	calibrations	for	which	the	optimized	model	repro‐
duced	GPP	observations	with	high	precision.	The	rationale	for	this	
was	that	optimized	parameters	from	model	runs	that	agreed	poorly	
with	GPP	observations	provided	little	or	no	useable	information.	The	
filtering	was	performed	using	a	two‐step	procedure.

First,	 the	 criterion	 for	 “improved	GPP	 simulation”	was	 the	 rel‐
ative	site‐year	posterior	Root	Mean	Square	Error	 (RMSE)	 (RMSEre)	
between	observed	and	optimized	GPP:

Whenever	the	value	of	RMSEre	was	higher	than	the	all‐RMSEre me‐
dian	plus	one	 interquartile	 range	 (IQR),	 the	site‐year	was	removed	
from	the	analysis.	We	also	discarded	sites	with	“inconsistent	param‐
eters	values”	[i.e.,	with	too	large	differences	between	the	10	repli‐
cates	at	the	same	site,	reflecting	convergence	issues	(equifinality)	of	
the	algorithm].

Second,	 for	 sites	with	at	 least	 two	RMSEre	<10%	among	 the	10	
replicates,	we	estimated	the	coefficient	of	variation	(CV)	of	parameters	
across	 the	 replicates.	We	 retained	 only	years	 for	which	 the	median	
CV	was	below	the	median	of	all	CV	plus	one	IQR	of	their	distribution.	
This	filtering	provided	optimized	parameters	from	371	site‐years	 (of	
516	considered	initially)	for	98	sites	(of	116;	Supporting	Information	
Appendix	S2)	spanning	seven	PFTs	 located	 in	boreal,	temperate	and	
tropical	areas	(Supporting	Information	Appendix	S3,	Table	S3.4).

For	 each	 parameter,	 we	 calculated	 the	 uncertainty	 reduction	
(UR)	as:

With	σpost and σprior	being	the	posterior and prior	parameter	uncertain‐
ties	(square	root	of	the	diagonal	elements	of	A and B).	We	then	sepa‐
rated	in	the	analysis	the	well‐constrained	from	the	poorly	constrained	
parameters.	Well‐constrained	parameters	are	defined	as	those	with:	(a)	
UR	higher	than	the	median	of	UR	distributions	for	all	parameters;	and	
(b)	a	low	correlation	of	error	with	other	parameters	(from	the	A	matrix;	
Equation	2).	Note	that	a	strong	error	correlation	making	two	parameters	
poorly	constrained	individually	is	still	an	interesting	result	because	it	in‐
dicates	a	range	of	possible	trade‐offs	between	these	two	parameters.

The	optimized	parameter	values	were	regressed	against	the	local	
background	bioclimatic	variables	(Table	2)	for	each	site	and	against	
the	soil	 relative	water	content	 (volume	of	water	by	volume	of	soil)	
simulated	by	ORCHIDEE.	Bioclimatic	variables	were	averaged	over	
the	whole	year	and	over	the	length	of	the	growing	season	(GSL).	For	
temperate	sites,	the	growing	season	was	defined	as	the	period	with	
daily	temperature	>5°C	and	relative	soil	water	content	>0.2	(Violle	et	
al.,	2015).	In	some	tropical	regions,	the	growing	season	length	is	po‐
tentially	limited	by	water	availability	(wet/dry	seasons);	we	thus	kept	

(4)RMSEre=
RMSE

mean
(

GPPobs

)

(5)UR=1−
�post

�prior
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the	same	definition	as	for	temperate	ecosystems.	For	boreal	sites,	
we	adapted	the	definition	of	the	growing	season	such	that	weekly	
temperature	must	be	>0°C.

Analyses	 were	 performed	 with	 the	 R	 v.3.2	 software	 (R	 Core	
Team,	2016),	and	standardized	major	axis	(SMA)	analyses	were	per‐
formed	with	the	“lmodel2”	package	(Legendre,	2014).	Given	that	we	
sought	to	compare	simulated	correlations	with	common	ecological	
properties	observed	at	the	global	scale,	we	analysed	different	groups	
of	 PFTs:	 all	 PFTs	 together;	 deciduous	 versus	 evergreens;	 needle‐
leaves	versus	broadleaves;	and	C3	grasses	(Supporting	Information	
Appendix	S1,	Table	S1.1).	Regressions	were	performed	both	with	and	
without	a	logarithmic	transformation	of	the	data.

3  | RESULTS AND COMPARISON TO 
E XISTING LITER ATURE

3.1 | Optimization performances

A	full	description	of	the	optimization	performances	and	parameter	
uncertainty	 reduction	can	be	 found	 in	 the	Supporting	 Information	
(Appendix	S3).

In	 all	 cases,	 the	 optimized	GPP	 time	 series	 agrees	 better	with	
observations	than	the	prior	ones,	with	the	RMSE	being	reduced	by	
76.6	±	13.0%	(Supporting	Information	Appendix	S3,	Table	S3.4).	The	
median	posterior	RMSEre	 is	0.19,	and	 the	 IQR	 is	0.11.	The	median	
CV	over	all	parameters	is	0.24	(IQR	=	0.13).	After	optimization,	the	
parameter	uncertainty	 (Equation	5)	 is	 reduced	by	30%	on	average	
(Supporting	Information	Appendix	S3,	Table	S3.5).

The	posterior	 error	 correlation	matrix	A	 (Eq.	 2)	 reveals	 a	 posi‐
tive	 correlation	 between	Vcmax	 and	 several	 other	 parameters,	 in‐
cluding	 (Figure	2):	Topt	 (r	=	0.57	±	0.05);	gslope	 (r	=	−0.37	±	0.04);	
Kroot	(r	=	0.24	±	0.07)	and	Vj/Vc	(r	=	−0.31	±	0.04).	There	also	exists	
a	negative	correlation	between	Kroot and gslope	(r	=	−0.38	±	0.08),	
between	Kroot and Wlim	(r	=	−0.30	±	0.09)	and	between	LAImax and 
Klai	(r	=	−0.37	±	0.16)	(Figure	2).

Joint	 analysis	 of	 information	 from	 the	 uncertainty	 reduction	
(Supporting	Information	Appendix	S3)	and	the	cross‐parameter	error	
correlation	enables	us	 to	distinguish	between:	 (a)	well‐constrained	
parameters	 (Lage and SLA	 for	evergreens;	Lage and Csenes	 for	de‐
ciduous);	(b)	well‐constrained	parameters	with	a	risk	of	equifinality	
(gslope,	Kroot,	LAImax,	Topt and Vcmax);	and	 (c)	poorly	constrained	
parameters	(Vj/Vc,	Klai,	Tauleaf and Wlim;	Table	1).	In	the	following	
analyses,	 trait	 covariations	have	 to	be	 interpreted	with	 respect	 to	
confidence	intervals	(posterior	error)	in	parameter	estimates.

3.2 | Covariation between parameters

We	analysed	cross‐site	correlations	between	optimized	parameters	
in	 relationship	 to	 expected	 trait	 relationships.	 The	 covariation	be‐
tween	 all	 parameters	 is	 illustrated	 in	 the	 Supporting	 Information	
(Appendix	 S4,	 Figure	 S4.2).	 For	 more	 clarity	 and	 considering	 the	
large	 number	 of	 parameters,	 we	 describe	 here	 only	 the	 relation‐
ships	involving	four	parameters	related	to	phenology	(SLA,	Lage)	and	
photosynthesis	(Vcmax,	gslope).	All	relationships	are	provided	in	the	
Supporting	Information	(Appendix	S4,	Table	S4.6).

We	 observed	 a	 negative	 correlation	 between	 SLA and Lage 
for	all	PFTs	(r	=	−0.63;	Table	3)	and	for	evergreens	(r	=	−0.67)	and	
broadleaves	PFTs	 (r	 =	−0.53),	 separately.	 The	 slope	of	 the	 emerg‐
ing	 relationship	 between	 LMA	 (1/SLA)	 and	 Lage	 (1.91;	 1.63–2.24	
95%	confidence	interval;	p	<	0.05)	for	all	PFTs	was	close	to	the	ob‐
served	 slope	 from	 field	 observations	 (1.71;	 1.62–1.82;	 Wright	 et	
al.,	2004).	Results	highlighted	other	covariations	between	Lage and 
Vcmax	(r	=	−0.59	overall	PFTs),	gslope and Lage	(r	=	−0.7	for	broad‐
leaves),	LAImax and SLA	(r	=	0.6	for	needleleaves),	and	SLA and Vcmax 
(r	=	−0.55	for	evergreens).	Here	again,	the	slope	between	Lage and 
Vcmax	emerging	for	broadleaves	PFTs	(−1.69)	was	close	to	observa‐
tions	(−1.13;	Xu	et	al.,	2017).

No	relationships	were	reported	between	gslope and Lage or be‐
tween	glsope and SLA,	 but	 a	 trade‐off	between	 the	 stomatal	 con‐
ductance	 (gs)	 and	 Lage	 was	 observed	 experimentally	 (Poorter	 &	
Bongers,	2006;	Reich,	Walters,	&	Ellsworth,	1992),	 in	addition	to	a	
positive	correlation	between	gs and SLA	(Poorter	&	Bongers,	2006).	
The	 optimizations	 showed	 opposite	 relationships	 between	 gslope 
and SLA	depending	on	the	PFT;	a	positive	significant	correlation	was	

TA B L E  2  Description	of	bioclimatic	variables	calculated	at	each	
site	and	for	each	year

Variable Description Units

LAT Latitude Degrees	north

MAT Mean	annual	temperature Degrees	Celsius

TMAX Mean	temperature	of	the	
warmest	month	of	the	year

Degrees	Celsius

TMIN Mean	temperature	of	the	
coldest	month	of	the	year

Degrees	Celsius

TVAR Temperature	difference	
between	TMAX and TMIN

Degrees	Celsius

DTR Yearly	average	of	diurnal	
temperature	range

Degrees	Celsius

MAP Mean	annual	precipitation Millimetres	per	year

REH Mean	annual	relative	
humidity

Percentage

SW Mean	annual	downward	
shortwave	radiation	(vis‐
ible	and	near‐infrared)

Watts	per	square	
metre

PDRY The	driest	quarter	of	the	
year	is	determined	(to	the	
nearest	week),	and	the	
total	precipitation	over	this	
period	is	calculated

Millimetres	per	year

RELP PDRY divided by MAP Fraction

SHUM Yearly	averaged	soil	
humidity

Fraction

GSL MATgs,	DTRgs,	SWgs,	MAPgs,	
REHgs and SHUMgs	are	the	
same	variables	averaged	
during	the	growing	season	
of	the	plant

–
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obtained	for	deciduous	PFTs	and	a	negative	significant	correlation	
for	evergreens	and	grasses	(Table	3).

The	positive	relationship	between	SLA and LAImax	emerging	from	
optimized	 parameters	 for	 coniferous	 PFTs	 was	 consistent	 with	 the	
positive	correlation	between	LAI and SLA	reported	by	Pierce,	Running,	
and	Walker	 (1994)	 for	coniferous	forests.	Finally,	a	negative	correla‐
tion	between	SLA and Vcmax	has	been	observed	experimentally	 for	
two	gymnosperm	species	(Niinemets,	Lukjanova,	Turnbull,	&	Sparrow,	
2007),	 confirming	 the	 negative	 relationships	 found	 in	 our	 study	 for	
needleleaves.	Despite	the	equifinality	risk	between	gslope	and	the	soil	
water	stress,	Wlim,	 in	Figure	2,	the	positive	correlation	observed	for	
broadleaves	(r	=	0.7)	and	evergreens	(r	=	0.52)	was	comparable	to	ob‐
servations	from	independent	data	compiled	by	Lin	et	al.	(2015).

Other	 significant	 correlations	 from	 the	 optimized	 parameters	
(Supporting	Information	Appendix	S4,	Table	S4.6;	Figure	S4.2)	could	
not	be	verified	against	observations	because	of	 the	correlation	of	
errors	observed	in	Figure	2	or	because	of	the	scarcity	of	ecological	

data,	preventing	us	from	drawing	a	conclusion	about	the	true	nature	
of	those	correlations,	such	as	between	gslope and Vcmax.

3.3 | Variation of trait‐related parameters 
with climate

We	analysed	correlations	between	parameters	and	climate	variables	
(Table	4;	Supporting	Information	Appendix	S5,	Figure	S5.4).	As	for	
covariations	between	parameters,	we	described	here	only	those	in‐
volving SLA,	Lage,	Vcmax and gslope.	All	relationships	are	listed	in	the	
Supporting	Information	(Appendix	S5,	Table	S5.7),	and	more	detailed	
analyses	are	also	available	in	the	Supporting	Information	(Appendix	
S5).

We	 found	 a	 strong	 negative	 correlation	 between	 leaf	 lifespan	
(Lage)	and	temperatures	(MAT,	TMIN; r	=	−0.78/−0.65;	Figure	3a)	for	
evergreen	PFTs.	This	correlation	was	reported	independently	at	the	
global	 scale	 (van	Ommen	Kloeke	et	 al.,	 2012;	Wright	et	 al.,	 2005)	

F I G U R E  2  Error	correlation	between	optimized	parameters	(derived	from	the	A	matrix)	averaged	over	deciduous	trees,	evergreen	trees	
and	C3	grass.	The	colour	scale	gives	the	error	correlation	coefficient.	For	greater	clarity,	the	coefficient	is	indicated	as	a	percentage	in	each	
matrix	cell.	A	description	of	each	parameter	is	listed	in	Table	1	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

(a) (b)

(c)

www.wileyonlinelibrary.com
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and	confirmed	by	Reich,	Rich,	Lu,	Wang,	and	Oleksyn	 (2014),	who	
showed	higher	needle	 longevity	with	cold	temperatures	for	boreal	
species.	However,	 the	observed	positive	correlation	between	Lage 
and MAT	at	the	global	scale	for	deciduous	PFTs	(van	Ommen	Kloeke	
et	al.,	2012;	Wright	et	al.,	2005)	was	not	found	specifically	for	decid‐
uous	systems	in	our	study.	Nevertheless,	a	positive	correlation	was	
observed	for	C3	grasses	and	broadleaves	(including	deciduous).	We	
also	found	a	strong	negative	correlation	between	Lage	and	the	mean	
annual	precipitations	(MAP)	 for	evergreen	PFTs	(r	=	−0.65),	consis‐
tent	with	field	data	(van	Ommen	Kloeke	et	al.,	2012).	In	addition,	a	
negative	correlation	between	Lage	and	incident	shortwave	radiation	
(SW)	for	evergreens	was	obtained,	consistent	with	field	observations	
(Poorter	&	Bongers,	2006).

Regarding SLA,	we	 found	opposite	 sensitivities	 to	MAT	 for	 ev‐
ergreen	 (r	 =	0.65)	 and	deciduous	 forests	 (r	 =	−0.55).	This	 result	 is	
consistent	with	independent	leaf‐scale	data	showing	a	positive	cor‐
relation	between	SLA and MAT	for	evergreen	species	(Figure	3b)	and	
a	negative	 correlation	 for	 deciduous	 species	 (Wright	 et	 al.,	 2005).	
The	model	calibration	also	resulted	in	a	positive	correlation	between	
the	relative	precipitation	(RELP;	Table	2)	and	SLA	for	deciduous	trees	
(r	 =	 0.60;	 Figure	 3c).	 Regarding	 the	 positive	 correlations	 obtained	
between	SLA	with	Kroot or gslope	 (Table	3),	 it	suggests	that	SLA	 is	
highly	sensitive	to	water	stress	for	deciduous	trees.	For	evergreens,	
a	positive	correlation	between	SLA	and	precipitation	also	emerges	
when	considering	the	length	of	the	growing	season	(MAPgs,	r	=	0.57;	

Table	4),	which	is	consistent	with	trait	data	(Wright	et	al.,	2005).	For	
evergreens,	SLA	was	positively	correlated	with	SW	 (r	=	0.53),	a	re‐
lationship	observed	by	Givnish,	Montgomery,	and	Goldstein	(2004)	
and	Poorter	and	Bongers	(2006).

In	their	meta‐analysis	of	stomatal	conductance	parameters	from	
observations	of	several	PFTs,	Lin	et	al.	(2015)	showed	that	the	slope	
of	the	stomatal	conductance	is	positively	correlated	with	the	mean	
air	 temperature	 over	 the	 growing	 period	 and	 with	 soil	 moisture	
stress.	Here,	our	results	show	the	same	correlation	between	gslope 
and	soil	moisture	during	the	growing	season	(r	=	0.71;	Figure	3d)	and	
relative	precipitation	(r	=	0.66)	for	deciduous	or	broadleaved	PFTs.	
On	 the	 contrary,	we	 find	 that	 gslope	 is	 negatively	 correlated	with	
mean	annual	precipitation	for	C3	grasses	(r	=	−0.59)	and	with	short‐
wave	radiation	for	broadleaved	PFTs	(r	=	−0.63).	Medlyn	et	al.	(2011)	
suggested	 that	 gslope	 is	 proportional	 to	 the	 photosynthesis	 com‐
pensation	point	for	CO2	and,	consequently,	to	growth	temperatures	
of	 the	plant	 (Bernacchi,	 Singsaas,	 Pimentel,	 Portis,	&	 Long,	 2001).	
This	assumption	is	supported	by	the	data	from	Lin	et	al.	 (2015).	 In	
our	study,	the	relationship	between	gslope	and	temperature	was	not	
supported.

Finally,	Vcmax	 is	mostly	 sensitive	 to	 temperature	 and	 light	 for	
broadleaved	PFTs,	with	a	negative	correlation	observed	with	MAT 
(r	=	−0.52)	and	SW	(r	=	−0.54).	This	result	contradicts	previous	ob‐
servations	by	Ali	et	al.	(2015),	who	suggested	a	positive	correlation	
between	Vcmax	and	seasonal	temperature	and	light	variations.

TA B L E  3  Relationships	between	trait‐related	parameters

Parameters r PFT Log SMA slope Number of sites References Type

Lage SLA −0.67 ever x −1.39 49 Reich	et	al.	(1999) 0

−0.53 bro x −3.47 37 0

−0.63 All x −1.92 98 Wright	et	al.	(2004) 0

Lage Vcmax −0.90 Bro x −1.69 37 Xu	et	al.	(2017) 0

−0.65 Dec  −2.15 23 0

−0.59 All x −3.13 98 0

gslope Lage −0.70 Bro x −0.74 37 Reich	et	al.	(1992) 1

−0.57 Grass  0.00 26 Poorter	and	Bongers	(2006) 1

gslope SLA −0.62 Ever  −534.01 49 Poorter	and	Bongers	(2006) 3

0.52 Dec  418.99 23 1

−0.51 Grass  −235.65 26 3

LAImax SLA 0.60 Need  422.11 35 Pierce	et	al.	(1994) 1

SLA Vcmax −0.55 Ever x −1.28 49 Niinemets	et	al.	(2007) 1

−0.53 Need x −0.75 35 1

gslope Wlim 0.70 Bro x 1.61 37 Lin	et	al.	(2015) 3

0.52 Ever x 1.47 49 3

Note: For	some	relationships,	values	are	log10‐transformed	(x).	For	each	relationship	is	shown	the	number	of	sites	and	the	correlation	coefficient	 
(r;	blue	when	negative;	red	when	positive).	Only	relationships	with	an	absolute	and	significant	(p	<	0.05)	correlation	coefficient	>0.5	are	listed	for	the	
different	groups	of	plant	functional	type	(PFT):	all,	broadleaves	(bro;	TroEB,	TemEB,	TDB	and	BDB),	needleleaves	(need;	TEN	and	BEN),	evergreens	
(ever;	TroEB,	TemEB,	TEN	and	BEN),	deciduous	(dec;	TDB	and	BDB)	and	C3	grasses	(gra).	Note	that	evergreens	include	needleleaves	and	that	broad‐
leaves	include	deciduous.	The	type	of	relationship	is	given	for	each	trait:	0	=	verified	with	ecological	observations;	1	=	partly	verified	on	similar	data;	
or	3	=	different	from	observations.	When	available,	the	reference	for	verification	is	given.	Well‐constrained	parameters	are	in	bold,	parameters	with	
a	risk	of	equifinality	are	in	plain	text,	and	poorly	constrained	parameters	are	in	italic.	Refer	to	Table	1	for	the	description	of	each	parameter.
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4  | DISCUSSION

4.1 | Uncertainties and shortcomings of the 
approach

This	 section	 provides	 an	 overview	 of	 possible	 shortcomings	 of	
our	approach	 that	might	explain	some	residual	mismatch	between	
the	 model	 and	 observations.	 Several	 factors	 can	 impact	 the	 op‐
timized	 value	 of	 the	 parameters,	 potentially	 aliasing	 the	 observed	

relationships:	 (a)	 flux	measurement	errors	and	errors	 in	ecosystem	

respiration	estimates	used	to	derive	gap‐filled	GPP;	(b)	optimization	

protocol/set‐up	errors;	and	(c)	model	systematic	errors	deriving	from	

absent	or	poorly	represented	processes	in	the	model.

First,	we	restricted	our	analysis	to	GPP.	This	flux	is	not	measured	

directly	but	estimated	 from	NEE	measured	using	 the	eddy‐covari‐

ance	method,	with	an	estimate	of	ecosystem	respiration	determined	

using	 empirical	 models	 (Reichstein	 et	 al.,	 2005),	 and	 thus	 can	 be	

TA B L E  4  Relationships	between	trait‐related	parameters	and	climate	variables

Trait Climate r PFT Log SMA slope References Type

Lage LAT 0.59 ever  24.90 Reich	et	al.	(2014) 0

−0.56 bro  −13.44  2

MAP 0.66 grass  1.14  2

−0.65 need x −0.66 van	Ommen	Kloeke	et	al.	(2012) 0

MAT −0.78 ever x −16.95 Reich	et	al.	(2014);	van	Ommen	Kloeke	et	al.	
(2012);	Wright	et	al.	(2005)

0

−0.62 need x −17.93 0

0.54 grass x 107.81  2

0.53 bro x 30.14  2

SW −0.53 ever x −1.84 Poorter	and	Bongers	(2006) 1

0.52 bro x 3.85  2

TMIN −0.65 ever x −30.99 Reich	et	al.	(2014);	van	Ommen	Kloeke	et	al.	
(2012);	Wright	et	al.	(2005)

1

SLA MAP 0.54 need x 0.37 Wright	et	al.	(2005) 0

MAPgs 0.57 ever x 0.47 0

MAT 0.65 ever x 12.16 Wright	et	al.	(2005) 0

MATgs −0.63 bro x −0.86 0

−0.55 dec x −0.96 0

RELP 0.60 dec x 0.25  2

0.59 bro  0.08  2

SW 0.53 ever  0.00 Givnish	et	al.	(2004);	Poorter	and	Bongers	
(2006);	Reich	et	al.	(2014)

1

gslope MAP −0.59 grass x −1.12  2

PDRY 0.58 dec  0.02 Lin	et	al.	(2015) 1

REH 0.64 dec  19.24 1

RELP 0.66 bro  42.67 1

0.58 dec  29.05 1

SHUMgs 0.71 dec  20.53 1

SW −0.63 bro  −0.10 2

SWgs −0.55 dec  −0.08  2

Vcmax MAT −0.52 bro  −4.77 Ali	et	al.	(2015) 3

RELP 0.60 bro  511.72  2

SW −0.54 bro  −1.15 Ali	et	al.	(2015) 3

Note: For	some	relationships,	traits	values	are	log10‐transformed	(x).	For	each	relationship,	the	correlation	coefficient	(r)	is	given.	Only	relationships	
with	an	absolute	(and	significant	p‐value	<	0.05)	correlation	coefficient	>0.5	are	listed	for	the	different	groups	of	plant	functional	type	(PFT):	all,	
broadleaves	(bro;	TroEB,	TemEB,	TDB	and	BDB),	needleleaves	(need;	TEN	and	BEN),	evergreens	(ever;	TroEB,	TemEB,	TEN	and	BEN),	deciduous	(dec;	
TDB	and	BDB)	and	C3	grasses	(gra).	The	type	of	relationship	is	given	for	each	trait:	0	=	verified	with	ecological	observations;	1	=	partly	verified	on	
similar	data;	2	=	not	verified;	or	3	=	different	from	observations.	When	available,	the	reference	for	verification	is	given.	Well‐constrained	parameters	
are	in	bold,	and	parameters	with	a	risk	of	equifinality	are	in	plain	text.	See	Table	1	and	2	for	the	description	of	each	parameter	and	climate	variables,	
respectively.
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biased	by	several	factors	(for	a	list	of	these	factors,	see	Supporting	
Information	Appendix	S3).	We	chose	GPP	over	a	combination	of	NEE	
and	latent	heat	or	evapotranspiration	fluxes,	which	has	often	been	
used	to	optimize	ORCHIDEE	(Bacour	et	al.,	2015;	Kuppel	et	al.,	2012;	
Peylin	et	al.,	2016),	because	it	implies	the	optimization	of	more	pa‐
rameters	related	to	soil,	respiration	and	energy	budget,	and	there‐
fore	increases	the	risk	of	equifinality.	To	reduce	the	uncertainties,	it	
is	necessary	to	lower	the	correlation	of	errors	between	parameters	
by	assimilating	complementary	biophysical	 variables.	For	example,	
assimilating	both	GPP	and	LAI	estimates	at	the	site	level	could	im‐
prove	the	evaluation	of	parameters	such	as	SLA or Lage	and,	conse‐
quently,	improve	the	estimation	of	photosynthesis	parameters.

Second,	 the	 Bayesian	 framework	 is	 based	 on	 the	 assumption	
that	 the	model/observation	errors	are	random	and	that	 the	model	
structure	 is	 “true”.	 Any	 bias	 of	model	 structure	 is	 expected	 to	 be	
aliased	onto	the	estimated	parameters	(MacBean,	Peylin,	Chevallier,	
Scholze,	 &	 Schürmann,	 2016)	 and	might	 therefore	 impact	 the	 re‐
trieved	correlations.	For	instance,	missing	processes	would	be	com‐
pensated	during	the	optimization	by	adjusting	parameters	(e.g.,	light	
attenuation,	vertical	distribution	of	leaf	area	index,	diffuse	light,	hor‐
izontal	 light	distribution	 in	 the	 stand)	 to	non‐optimal	 values.	Also,	
although	traits	are	usually	measured	at	the	leaf	level,	our	approach	
rather	focuses	on	traits	at	the	canopy	level	[given	the	structure	of	
ORCHIDEE	 and	 the	 assumed	 exponential	 attenuation	 of	 light	 and	
leaf	area	index	from	top	to	bottom	of	canopy	(Krinner	et	al.,	2005;	
Supporting	 Information	Appendix	S1,	Table	S1.2)	and	the	assimila‐
tion	of	GPP	data].	As	 an	 additional	 test,	we	 conducted	 the	 above	
analyses	using	multi‐year	instead	of	single‐year	observations	in	order	
to	add	more	constraints	on	parameters	(see	Supporting	Information	
Appendix	S4,	Figures	S4.3	and	S5.5).	The	same	relationships	were	

found	as	with	single‐year	observations,	thus	strengthening	our	con‐
clusions,	showing	that	spatial	correlations	are	observed	even	when	
taking	into	account	a	possible	temporal	variability	of	traits.

Finally,	an	incorrect	representation	of	species	and	the	lack	of	rep‐
resentation	of	variability	of	traits	within	a	community	in	ORCHIDEE	
can	affect	simulated	processes,	which	will	ultimately	impact	the	es‐
timated	parameter	values	(for	a	discussion	on	initial	site	conditions,	
see	Supporting	 Information	Appendix	S3).	 Especially,	 the	C3	 grass	
PFT	represents	diverse	grasslands,	with	different	species,	ecophys‐
iology	 (Adams,	Turnbull,	 Sprent,	&	Buchmann,	2016)	 and	manage‐
ment	practices	 (Merbold	et	 al.,	 2014).	 This	 results	 in	 an	 increased	
variability	 and	 a	 high	 range	 of	 estimated	 plant	 functional	 traits	
(Supporting	Information	Appendix	S3,	Figure	S3.1).	A	refinement	of	
the	PFT	definition	might	 improve	 the	 robustness	 of	 optimizations	
(for	 instance,	by	separating	natural	or	semi‐managed	biomes	or	by	
distinguishing	genera	or	major	species;	Peaucelle	et	al.,	2017).

In	order	 to	decrease	 the	 impact	of	uncertainty	 in	PFT	compo‐
sition	 and	 reduce	 the	 correlation	 errors	 between	 parameters,	 the	
use	of	concomitant	observations	of	traits	and	carbon	fluxes	at	the	
FLUXNET	sites	would	enable:	 (a)	the	constraint	of	known	parame‐
ters;	and	(b)	the	validation	of	optimized	traits.	However,	functional	
trait	observations	at	FLUXNET	sites	and	a	precise	description	of	spe‐
cies	composition	are	not	yet	systematic	(Musavi	et	al.,	2015,	2016).

4.2 | Ecological consistency of trait relationships

The	optimization	of	model	parameters	managed	to	reproduce	many	
known	ecological	properties.	The	optimized	parameters	consistently	
matched	the	well‐known	relationships	 resulting	 from	the	 leaf	eco‐
nomic	spectrum	(LES)	theory	(Reich	et	al.,	1999;	Wright	et	al.,	2004).	

F I G U R E  3  Four	examples	of	covariations	obtained	between	optimized	parameters	(Table	1)	and	environmental	conditions	(Table	2)	of	
the	sites	for	plant	functional	types	(PFTs)	TroEB	(black	square),	TEN	(red	square),	TemEB	(green	triangle),	TDB	(blue	square),	BEN	(cyan	dots)	
and	BDB	(pink	dots).	Each	point	represents	the	mean	optimized	parameter	(environmental	variable)	value	for	one	site,	and	the	error	bars	
represent	the	inter‐annual	variability	(no	bars	means	only	1	year	of	measurement).	The	red	line	represents	the	slope	of	the	standardized	
major	axis	regression.	PFT	description	can	be	found	in	Table	S1.1	(Appendix	S1)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

(a)

(c)

(b)

(d)

www.wileyonlinelibrary.com


1362  |     PEAUCELLE Et AL.

In	particular,	our	 results	 align	with	 the	 trait	 theory	 that	 long‐lived	
canopies	 are	metabolically	 less	 active	 and	are	 consistent	with	 the	
LES	 empirical	 evidence	 that	 plants	 invest	 either	 in	 structure	 or	 in	
photosynthesis	(Liu	et	al.,	2010;	Reich,	2014).

Our	results	also	reproduced	several	observed	trait–climate	relation‐
ships	 at	 the	PFT	 level.	Globally,	 evergreen	PFT	parameters	 showed	 a	
strong	dependence	on	mean	annual	temperature	and	radiation,	whereas	
parameters	for	deciduous	PFTs	exhibited	a	strong	sensitivity	to	precipita‐
tion	and	soil	moisture	over	the	growing	season	(Supporting	Information	
Appendix	S5,	Figure	S5.4).	As	postulated	by	Reich	(2014),	climate	exerts	
a	control	on	the	average	leaf	characteristics	at	the	community	level.	The	
observed	relationships	obtained	at	the	PFT	level	might	reflect	not	only	
differences	 in	 plant	 response	 to	 climate,	 but	 also	 differences	 in	 plant	
community	composition	(Shi	et	al.,	2015).	These	results	suggest	that	both	
the	development	of	acclimation	processes	and	trait‐based	approaches	
are	needed	in	TBMs	if	we	seek	to	capture	the	effect	of	biogeography	on	
ecosystem	characteristics	(Fisher	et	al.,	2018;	Lu	et	al.,	2017).

Finally,	although	the	results	clearly	highlight	that	photosynthesis	
and	phenological	mechanisms	implemented	in	ORCHIDEE	are	robust	
enough	to	reproduce	known	behaviours	of	several	vegetation	spe‐
cies,	below‐ground	processes	still	appear	poorly	represented,	which	
resulted	in	weakly	constrained	parameters	and	trait	covariations	in‐
consistent	with	the	literature.	These	discrepancies	are	primarily	at‐
tributable	to	a	lack	of	ecophysiological	knowledge	that	reflects	the	
difficulty	of	studying	below‐ground	ecological	processes.	The	root‐
ing	 system	uses	model‐specific	 parameters	 (Kroot)	 that	 are	 hardly	
comparable	to	measured	functional	traits.

5  | CONCLUDING REMARKS AND 
RECOMMENDATIONS

The	approach	presented	 in	this	study	 is	a	new	and	effective	way	to	
validate	the	processes	implemented	in	TBMs,	to	provide	a	better	defi‐
nition	of	vegetation	response	to	climate	(Liang	et	al.,	2018),	and	could	
help	 to	 improve	existing	data	 assimilation	 frameworks	 (Arsenault	 et	
al.,	2018;	Kaminski	et	al.,	2013;	LeBauer,	Wang,	Richter,	Davidson,	&	
Dietze,	2013)	by	providing	ecological	 constraints.	The	availability	of	
continuous	 observations	 from	 eddy‐covariance	 flux	 measurements	
gives	a	unique	opportunity	to	resolve	the	different	components	of	the	
short‐	and	long‐term	variability	of	traits	through	this	approach.

Our	results	show	that	optimized	leaf‐related	parameters	align	with	
plant	trait	theory	and	highlight	the	need	to	implement	acclimation	pro‐
cesses	and	trait‐based	approaches	in	models	instead	of	using	constant	
parameters	to	reduce	uncertainties	in	spatio‐temporal	patterns	of	the	
modelled	carbon	fluxes.	A	first	step	would	be	to	assess	the	behaviour	
of	the	model	at	the	global	scale	when	trait–climate	relationships	char‐
acterized	in	this	study	are	implemented	explicitly.	In	parallel,	the	rela‐
tionships	highlighted	in	the	present	study	might	help	in	development	
or	validation	of	new	methods	to	simulate	plant	acclimation.	Used	in	a	
prognostic	way,	this	approach	could	enable	the	study	of	correlations	
at	the	canopy	scale	and	assessment	of	the	behaviour	of	trait‐related	
parameters	that	are	difficult	to	observe	experimentally.

Several	 known	 ecological	 properties,	 observed	 at	 the	 site/leaf	
scale,	emerged	from	model–data	assimilation.	However,	quantitative	
comparisons	with	observations	were	possible	only	for	two	of	them,	
SLA and Lage,	 which	 are	 also	 the	 two	most	 studied	 traits.	 This	 is	
mainly	because	TBMs	use	model‐specific	parameters	that	cannot	be	
compared	directly	with	standard	trait	observations,	but	also	because	
concomitant	observations	of	functional	traits,	both	in	space	and	in	
time,	 are	 scarce	 in	 the	 literature.	 A	 recommendation	 to	 the	 TBM	
community	would	be	to	make	use	of	parameters	(and	processes)	that	
can	be	related	directly	to	observations	in	order	to	unite	vegetation	
model	and	functional	traits	(for	instance,	the	use	of	the	specific	root	
length	for	below‐ground	processes).

We	argue	that	co‐located	systematic	and	standardized	trait	obser‐
vations	[starting	with	key	traits	related	to	phenology	(SLA and LAI),	pho‐
tosynthesis	(Vcmax, Jmax and Topt),	water	transport	(gs)	and	allocation	
(carbon:nitrogen ratio and shoot/root);	Law	et	al.,	2008]	along	with	bio‐
metric	data	are	needed	at	the	FLUXNET	sites	or	within	other	environ‐
mental	observation	networks,	such	as	Integrated	Carbon	Observation	
System	(ICOS)	or	National	Ecological	Observatory	Network	(NEON),	if	
we	seek	to	distinguish	temporal	and	spatial	components	of	trait	vari‐
ability	across	biomes	and	climates.	The	creation	of	a	FLUXNET	trait	da‐
tabase	could	improve	our	comprehension	of	trait	acclimation	and	help	
us	to	disentangle	the	differences	observed	at	regional	and	local	scales,	
to	 improve	the	scaling	up	of	processes	from	the	 leaf	to	the	canopy/
ecosystem	level	and	to	calibrate/validate	ecosystem	models	properly.
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